Low-dose radiation cancer susceptibility models
نویسندگان
چکیده
the biological effects of low-dose radiation exposure are increasingly better understood, continued research is needed to develop better individual risk-based models. Human population exposures to low doses of ionizing radiation (defined by the US Department of Energy as less than 10 rem or 0.1 Sv) are increasing due to occupational exposures of nuclear plant workers, waste managers and medical workers, and increasing use in security screening and medical diagnostic and therapeutic procedures. The annual dose to the American population has doubled over the last 20 years [1]. This is causing growing concerns in many communities since the potential adverse health effects of low-dose radiation exposure are not well understood. Currently, risk predictions are based on a one-size-fits-all linear-no-threshold model (the LNT model). This model predicts that (cancer) risk from radiation exposure is linearly related to exposed dose. While this model may be appropriate for risk predictions at high doses, the shape of the dose response curve at low doses is not well understood. We, and others, have provided evidence against the LNT risk model in the low-dose region of exposure and have shown that low-dose radiation responses appear to be strongly influenced by genetic makeup [2]. Clearly, epidemiological data are important and suggest that low dose exposures can increase cancer risk, but existing data remains controversial [3]. However, detecting genetic variants that dictate the low-dose radiation response in human populations is fraught with difficulties. The genetic heterogeneity in humans necessitates the collection of large numbers of DNA samples from patients and control populations, with no guarantee that the methods presently available would allow the detection of the most important genetic variations. Furthermore, the host environment (including other exposures, diet, lifestyle, etc) and individual health status are likely to play a determining role in the low-dose radiation response, but are difficult to control in human populations. On the other hand, parallel studies in mice offer many advantages for the study of the genetic basis of complex traits. These include: well-designed populations for a specific question, standardized husbandry, comprehensive analysis of phenotypes and the ability to manipulate the system. Furthermore, to recapitulate genetic hetero-Editorial zygosity of humans, two powerful genetically distinct mouse resources, Diversity Outbred (DO) and Collaborative Cross (CC) mice, have been generated by the mouse research community [4, 5]. DO and CC mice will enable researchers to rapidly map genetic loci at high resolution and identify individual genes involved in …
منابع مشابه
Estimating the Radiation-Induced Cancer Risks in Pediatric Computed Tomography
Introduction One of the central questions in radiological protection is the magnitude of the risks from low doses of radiation, related to the justification and optimization of the diagnostic medical exposures. Therefore, the aim of this study was to estimate the cancer incidence and mortality risks in children of different ages, sizes, and ethnicities undergoing computed tomography examination...
متن کاملMeasurement of the Adsorbed Radiation Dose to Eyelens During CT Scan and Radiotherapy of Nasopharynx Cancer
Introduction: The study of the cause of death during the last few decades has shown that death due to infectious diseases has been declining and has been rising due to noninvasive diseases, especially cancers and accidents. Cancer is considered as one of the fatal diseases, and every year, more than 10.9 million people worldwide are diagnosed with the disease. Mater...
متن کاملEvaluation of Breast Cancer Radiation Therapy Techniques in Outfield Organs of Rando Phantom with Thermoluminescence Dosimeter
Background: Given the importance of scattered and low doses in secondary cancer caused by radiation treatment, the point dose of critical organs, which were not subjected to radiation treatment in breast cancer radiotherapy, was measured.Objective: The purpose of this study is to evaluate the peripheral dose in two techniques of breast cancer radiotherapy with two energies. Methods: Eight diff...
متن کاملComparison of Radiobiological Models for Radiation Therapy Plans of Prostate Cancer: Three-dimensional Conformal versus Intensity Modulated Radiation Therapy
Purpose: In the current study, using different radiobiological models, tumor control probability (TCP) and normal tissue complication probability (NTCP) of radiotherapy plans were calculated for three-dimensional conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) of prostate cancer.Methods and Materials: 10 prostate plans were randomly selected among patients ...
متن کاملExcess Cancer Risk Assessment from Some Common X-Ray Examinations in Sabzevar County
Introduction: Nowadays ionizing radiation has a considerable contribution in medical diagnostic and treatment. Using ionizing radiation is increasing rapidly, so biological effects of ionizing radiation should be considered more. X-rays in the range of diagnostic radiology have hazardous effects and risks that are defined as random effects. These effects obey the LNT hypothesis that occur at lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2015